

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Escuela Nacional de Ciencias de la Tierra

Plan de estudios de la Licenciatura en Geografía Aplicada

				Progran	na		
	PERC	EPC	IÓN REMO	OTA HIPERESPEC	TRAL Y	'ALTERNATI\	/A (VANTS)
Clave	Semes		Créditos 6	Campo de conocimiento	Interdisciplinario Geotecnológico Avanzada		
				Grupo			
				Etapa			
Modalid	ad Cu	ırso	(X) Taller	(X) Lab () Sem ()	Tipo	T() P()	T/P (X)
	Ob	ligat	torio ()	Optativo (X)			
Caráctei		Obligatorio E () Optativo E ()			Horas		
					5	Semana	Semestre
					Teóric	as 2	Teóricas 32
					Práctic	as 2	Prácticas 32
					Total 4		Total 64

	Seriación	
	Ninguna (X)	
	Obligatoria()	
Asignatura antecedente		
Asignatura subsecuente		
	Indicativa ()	
Asignatura antecedente		
Asignatura subsecuente		

Objetivo general:

Comprender las nociones fundamentales de tecnologías avanzadas para obtener información de muy alta resolución espacial, espectral y temporal, por medio de la percepción remota

hiperespectral, los datos lídar y la utilización de Vehículos Aéreos No Tripulados (VANT o dron) como complemento al curso obligatorio de Fotointerpretación y Percepción Remota, que le permitan al alumno plantear nuevas alternativas de solución para el estudio del territorio.

Objetivos específicos:

- 1. Reconocer las diferentes metodologías para el uso de la información hiperespectral en plataformas satelitales, aéreas e *in situ* que le permitan al alumno resolver problemas de forma integral.
- 2. Comparar las capacidades del procesamiento digital de imágenes y otros datos hiperespectrales con los métodos tradicionales que le permitan al alumno crear propuestas innovadoras y de gestión para plantear y resolver problemas.
- 3. Explicar las capacidades, el manejo y la obtención de información hiperespectral, lídar e imágenes de alta resolución espacial por medio de vehículos aéreos no tripulados (VANT) de acuerdo con los avances geotecnológicos recientes, manteniendo una actitud de actualización e innovación permanente en la solución de problemas.

Índice temático						
	Tema	Horas Semestre				
		Teóricas	Prácticas			
1.	Conceptos básicos de percepción remota multi e hiperespectral.	4	4			
2.	Sensores hiperespectrales.	8	8			
3.	Sensores multiespectrales y lídar en drones.	8	8			
4.	Análisis de información hiperespectral y de drones.	12	12			
	Total	32	32			
Suma total de horas			64			

	Contenido Temático				
Tema	Subtemas				
	1.1. Espectro electromagnético.				
1.	1.2. Ventanas atmosféricas.				
1.	1.3. Firmas espectrales.				
	1.4. Plataformas y sensores.				
	2.1. Satélite: Hyperion y Rapid-Eye.				
2.	2.2. Aéreos: LIDAR, AVIRIS y CASI.				
	2.3. In situ: GER-1500.				
	3.1. Principios básicos de fotogrametría digital.				
	3.2. Manejo de drones (geoposicionamiento).				
3.	3.3. Cámaras pancromáticas, multiespectrales (Visible e Infrarroja).				
	3.4. Barredores lídar en VANT.				
	3.5. Extracción, procesamiento y análisis de la información.				
4.	4.1. Aplicaciones en estudios forestales.				

- 4.2. Aplicaciones en oceanografía y pesca.
- 4.3. Aplicaciones en agricultura de precisión y uso actual del suelo.
- 4.4. Aplicación en estudios urbanos.

multiespectral.

4.5. Aplicación en prevención y manejo de desastres.

Estrategia	as didácticas	idácticas Evaluación del aprendizaje			
Exposición	()	Exámenes parciales	(X)		
Trabajo en equipo	(X)	Examen final	()		
Lecturas	(X)	Trabajos y tareas	(X)		
Trabajo de investigaci	ón (X)	Presentación de tema	(X)		
Prácticas (taller o labo	oratorio) (X)	Participación en clase	(X)		
Prácticas de campo	(X)	Asistencia	()		
Aprendizaje por proye	ectos (X)	Rúbricas	()		
Aprendizaje basado e	n problemas (X)	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)			
	Perfil profe	esiográfico			
Título o grado	Licenciatura o Posgrado	en Física, Ingeniería, Fotogrametría, Ge	ografía,		
	Geomática, Biología o Agronomía.				
Experiencia docente	Mínimo 2 años de enseñanza en educación superior.				
Otra característica Experiencia comprobable en el manejo y aplicaciones de la percepción remota hiperespectral y alternativa (VANT, aerofotografía digital					

Bibliografía básica:

- Chang, C.I. (Ed.). (2007). *Hyperspectral data exploitation: theory and applications*. New York: : John Wiley & Sons.
- Fahlstrom, P., & Gleason, T. (2012). *Introduction to UAV systems*. New York: John Wiley & Sons
- Méndez, A. (2016). Robotización del sistema agropecuario, Horizonte-A, 12(83). Disponible en: [http://horizonteadigital.com/robotización-del-sistema-agropecuario-ing-agr-andres-mendez/].
- Renslow, M. (2013). ASPRS Airborne Topographic Lidar Manual. U.S.A. ASPRS.
- Thenkabail, A., Lyon, P.S., & Huete, J.G. (2011). *Hyperspectral remote sensing of vegetation*. New York: CRC Press.
- Varshney, P.K., & Arora, M.K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin: Springer Science & Business Media.

Bibliografía complementaria:

- Liang, S. (2005). *Quantitative remote sensing of land surfaces* (Vol. 30). Berkeley, CA: John Wiley & Sons.
- Ollero, A., & Maza, I. (2007). *Multiple heterogeneous unmanned aerial vehicles*. Springer Publishing Company, Incorporated.

Tratándose de un tema de frontera y extremadamente dinámico, será necesario identificar lecturas recientes en cada curso, para reflejar el estado de la tecnología y los desarrollos más relevantes. Esto tiene valor didáctico en formar la capacidad y la actitud de mantener actualizados los conocimientos.

Bibliografía electrónica:

- CREA. (2015). Drones: una herramienta para el monitoreo de cultivos. En: Revista de los CREA, 415. Disponible en: [http://www.crea.org.ar/Intranetcrea/images/ingranet/revista/revista_2015_mayo_415.pdf].
- Teledet (s/f). Índices de vegetación a partir de imágenes hiperespectrales. Disponible en: [http://www.teledet.com.uy/tutorial-imagenes-satelitales/imagenes-hiperespectrales.htm]
- Teledet (s/f). Tutorial Imágenes de Satélite con Resolución Hiperespectral. Disponible en: [http://www.teledet.com.uy/tutorial-imagenes-satelitales/satelites-resolucion-espectral.htm]